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Abstract

Asymptotic equivalence of wavelet estimation of d in stationary (Jensen, 1999) and non-

stationary ARFIMA(p, d, q) processes is proven. Performance of this estimator and of some

competitors are studied via simulation for d ∈ (0.0, 1.5). The proposed procedures are illus-

trated in two data sets.
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1 Introduction

ARFIMA(p, d, q) processes (Hurst, 1951) have important application in metereology, astron-

omy, hydrology, and economics (Beran, 1994; Hosking, 1981). Estimators for the fractional

parameter d are proposed, among others, by Geweke and Porter-Hudak (1983) and Reisen

(1994). These two procedures are motivated by Fourier analysis ideas. However, many inter-

esting applications are non-stationary in nature. Drawbacks of the aforementioned estimators
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in such situation are well-known (Lopes, 2008). In these situations wavelets yields more adapt-

able estimators (Percival and Walden, 2000).

Jensen (1999) considers a wavelet estimator of d, in the stationary case, for Haar wavelet

basis, showing its asymptotic normality and consistency. We extend this result for the non-

stationary case and any regular wavelet bases.

In Section 2, we present the ARFIMA(p, d, q) model, the wavelet estimator and its statis-

tical properties under stationary setup. In Section 3, we prove that these properties are still

true for the non-stationary case. A simulation study is presented in Section 4 whilst two illus-

trative data sets are analyzed in Section 5. A final discussion and some concluding remarks

are drawn in Section 6.

2 Fractional Parameter Estimators

Consider the ARFIMA(p, d, q) process given by the form

Φ(B)(1− B)dXt = Θ(B)εt, t ∈ Z, (1)

where {εt}t∈Z is a white noise process with zero mean and variance σ2
ε > 0, B is the backward

shift operator, and Φ(·) and Θ(·) are polynomials of respective degrees p and q, with all their

roots outside the unit circle. The process {Xt}t∈Z is linear, without a deterministic term, and

d is the degree or the fractional differencing parameter . We define Ut = (1− B)dXt.

If d ∈ (−0.5, 0.5), then the ARFIMA(p, d, q) process is stationary and invertible. Moreover,

it exhibits the property of long memory when d ∈ (0.0, 0.5), of intermediate memory when

d ∈ (−0.5, 0.0), and of short memory when d = 0. If d ≥ 0.5, it is non-stationary although for

d ∈ [0.5, 1.0) it is level-reverting in the sense that there is no long-run impact of an innovation

on the value of the process (Wu and Crato, 1995). If d ≤ −0.5 the ARFIMA process is

non-invertible (Hosking, 1981). When p = 0 = q one has the ARFIMA(0, d, 0) process.

Estimators for d include d̂GPH (Geweke and Porter-Hudak, 1983) and d̂SPR (Reisen, 1994),

based both on the periodogram function. We describe below a wavelet alternative, as proposed

by Jensen (1999).

Jensen (1999) states

ωj,k =< Xt, ψj,k(t) >= 2j/2

∫
Xtψ(2jt− k)dt (2)

which are associated with the process {Xt}t∈Z given by (1) when p = 0 = q. The ωj,k are

called the wavelet coefficients.

Jensen (1999) motivates and proposes as an estimator for d the solution of an ordinary
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least square regression of ln
(
R̂(j)

)
on j, where

R̂(j) =
1

2j

2j−1∑

k=0

ω2
j,k, j = 0, 1, 2, · · · , J − 1, (3)

since E
(
R̂(j)

)
= R(j) ≈ σ22−2jd (Jensen, 1999). We consider a slight modification, with

negligible differences, using the two-basis logarithmic transformation of R(j) instead of the

natural logarithm, which yields the following estimator (denoted hereafter by d̂wave)

d̂wave =

[
J−1∑
j=0

y2
j

]−1 [
J−1∑
j=0

yj log2(R̂(j))

]
, (4)

where J = [log2 n] and yj = −2j + J − 1.

Jensen (1999) proves the asymptotic normality and consistency for d̂wave for stationary

ARFIMA(0, d, 0) processes.

3 Non-Stationary ARFIMA Processes

We prove here that the estimator defined by (4) has the same properties in the non-stationary

case, i.e. when d ≥ 0.5.

Let {Yt}t∈Z be a stochastic process given by (1) with p = 0 = q and dns = d + r, where

d ∈ (−0.5, 0.5) and r ∈ N. Then, (1 − B)rYt = Xt, for any t ∈ Z, such that {Xt}t∈Z is an

ARFIMA(0, d, 0) process, with d ∈ (−0.5, 0.5). Let us consider their respective continuous

extension stochastic processes Y ∗(t) and X∗(t) in such a way that

Y ∗(t) =

∫ t

0

X∗(s) ds, for all t ∈ [0, 1], (5)

and

Y2J t = Y ∗(t) and X2J t = X∗(t), for all t ∈ {2−J , · · · , 1} a.e..

We will employ r = 1 but extension to any r is straightforward. The autocovariance

functions RX(·, ·) and RX∗(·, ·) can be related by

RX∗(t, s) = RX(2J t, 2Js) =
σ2

ε Γ(1− 2d)Γ(2J |t− s|+ d)

Γ(d)Γ(1− d)Γ(2J |t− s|+ 1− d)
. (6)

Therefore,

RY ∗(t, s) =

∫ t

0

∫ s

0

RX∗(u, v) du dv =

∫ t

0

∫ s

0

RX(2Ju, 2Jv) du dv, (7)

for all t, s ∈ [0, 1].

Theorem 1 summarizes the relationship between Rns(j) and R(j), respectively the variance

of the wavelet coefficients related to the processes {Yt}t∈Z and {Xt}t∈Z. Among other things,

it also states that the wavelet estimators based respectively on the original non-stationary time
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series derived from ARFIMA(0, dns, 0) processes, with dns = d + r, where d ∈ (−0.5, 0.5) and

r ∈ N, or its lagged-one counterparts, are statistically equivalent. Therefore, one does not need

any further assumptions for obtaining asymptotically consistent estimators for non-stationary

ARFIMA(0, dns, 0) processes.

Theorem 1. Let {Yt}t∈Z be an ARFIMA(0, dns, 0) process with dns ∈ (0.5, 1.5), where dns =

d + r, with d ∈ (−0.5, 0.5) and r = 1. Let {Xt}t∈Z be the stationary process given by the

expression (1), when p = 0 = q. Let R(j) be the variance of the wavelet coefficients related

to this process. Then, the variance of the wavelet coefficients for the non-stationary process

{Yt}t∈Z is given by

Rns(j)

R(j)
= O(2−2j), as j →∞. (8)

Moreover, E(d̂ns) = E(d̂) + 1, d̂ns and d̂ are asymptotically equivalent in mean square sense

and, therefore, d̂ns → dns, as J ↑ ∞.

Proof: Note that

E(Xω2
j,k) = 2−j

∫ 1

0

∫ 1

0

RX(2J−jt, 2J−js)ψ(t)ψ(s) dt ds, (9)

which is independent of k. By Jensen (1999), one has E(Xω2
j,k) ≈ σ2 2−2j d, where σ2 is

functionally dependent on the Haar basis but not on j, J and d.

Similarly, from expression (7),

E(Y ω2
j,k) = 2−3j

∫ 1

0

∫ 1

0

[∫ t

0

∫ s

0

RX(2J−ju, 2J−jv)du dv

]
ψ(t)ψ(s) dt ds

≈ σ2
ns 2−2j dns , (10)

which is independent of k. Moreover, if J ↑ ∞ and J − j ↑ ∞, from expression (6), and using

the Stirling’s formula, one has

E(Xω2
j,k) ≈ C 2(2d−1)J 2−2jd (11)

and

E(Y ω2
j,k) ≈ C∗ 2(2d−1)J 2−2jdns . (12)

Following the same estimation procedure as in Jensen (1999), one finds the estimator for

dns regressing log2(R̂ns(j)) on j by considering

log2(R̂ns(j)) = log2 σ2
ns − 2 dns j + ξns(j). (13)

Expressions (11) and (12) together and (13) give the final results, as in Jensen (1999).

Remark: One can prove that E(Xω2
j,k) = σ2

A 2−2jd, where σ2
A will depend on the specific

basis being used but will be asymptotically dissociated from j, J and d. This convergence will
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be faster for compactly supported wavelets and also for bases with fewer null moments (such

as the Haar basis). Therefore, the same results of Theorem 1 are valid for any fast decaying

wavelet basis.

4 Simulations

We conduct a simulation study considering different wavelet bases for several values of d, and

different sample sizes, to illustrate the behavior of the wavelet estimator given in expression (4).

The time series {Xt}n
t=1 generated from the ARFIMA(0, d, 0) processes, are simulated using

the algorithm proposed by Hosking (1981) with εt ∼ N (0, σ2
ε ). We consider 200 replications.

The processes {Yt}t∈Z were obtained through the algebraic form Yt = (1−B)−rXt, for t ∈ N,

with Y1 = X1. We use Fortran (IMSL) subroutines for simulation and estimation results. Four

wavelet bases are employed: Haar, Mexican hat, Shannon and Morlet (Percival and Walden,

2000; Vidakovic, 1999).

We compare d̂Haar, d̂Mexhat, d̂Shannon, d̂Morlet with d̂GPH and d̂SPR, for sample sizes

n = 2J , with J = 7, 8, 9, 10. Truncation for d̂SPR is β = 0.9 (Reisen, 1994) whilst g(n) =

n0.5 (Geweke and Porter-Hudak, 1983) for both d̂GPH and d̂SPR. For bias reduction, we

compute the estimator (4), given in expression (4), with j = 3, . . . , J − 1. We vary d in

{0.05, 0.15, 0.40, 0.50, 0.70, 0.90, 1.10, 1.30, 1.40}. Table 1 presents the results for the non-

stationary range of d.

When dns ∈ [0.5, 1.0), the best wavelet basis is the Mexican hat. All estimators improve

when n increases, as expected, and any wavelet basis has smaller mean squared error value

than the ones related to the estimates d̂GPH and d̂SPR.

When dns ∈ (1.0, 1.5), the Mexican hat basis presents larger bias and mean squared error

values than the Haar basis. For these values of dns the wavelet bases Haar and Shannon pro-

duce better results in the sense of both smaller bias and mean squared error values. However,

as soon as dns gets close to the value 1.5 the estimates from Shannon basis produce higher

mean squared error values and the Haar wavelet basis is again competitive.

5 Applications

In this section we give two applications of observable data: the UK short and long term interest

rate time series. The UK short interest rate time series is a 91 day UK treasury bill rate while

the UK long term interest gilt time series yield on 20 year UK gilts. Both time series are

quarterly data sets from quarter 1 in 1952 to quarter 4 in 1988, producing 148 observations.

These time series are presented and analyzed by Mills (1997) with special interest in the theory
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of the unit root tests. From the plots of these time series and their sample autocorrelation

and periodogram functions, it is clear that these data sets exhibit non-stationary behaviors

(Mills, 1997).

We consider the hypothesis test H0 : d ≤ 1/2 (stationarity) versus H1 : d > 1/2 (non-

stationarity). The test statistics is, in each case, the standardized estimator. Asymptotic

normality is then invoked to compute the approximated p-value. We obtain the following

results: d̂GPH = 1.0120, with p-value equal to 0.0231, and d̂SPR = 0.7675, with p-value equal

to 0.0095, for the UK short term interest rates. For the UK long term interest rates, we obtain

the following results: d̂GPH = 1.1345, with p-value equal to 0.0066, and d̂SPR = 1.1362, with

p-value equal to 0.0000. For each basis, the wavelet estimates, given in expression (4), are

obtained based on 128 contiguous observations starting respectively at i = 1, . . . , 21. For each

wavelet basis and starting point, we consider the same hypothesis test (the estimated values

are not reported here). Figure 1 (a) and (b) show the p-values for each one of these 21 tests,

calculated for the Haar, Mexican hat, Shannon and Morlet wavelet bases.
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Figure 1: p-Values for all 21 Estimators Based on Haar, Mexican hat, Shannon and Morlet Wavelet

Bases: (a) Short Term Interest Rates; (b) Long Term Interest Rates.

For the UK long term interest rates, all estimation methods lead to the rejection of the

null hypothesis, at 5% significance level. The same is true for the UK short term interest

rates except for the Mexican hat wavelets. Therefore, the results agree with Mills (1997).

The eccentric behavior of the Mexican hat wavelets is due to the larger weights given to the

neighboring data and the remark following Theorem 1. The same lower power issues can be

observed for the Morlet wavelets, albeit on a lesser degree.
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6 Conclusions

In this work we compare different estimators, largely known in the literature, for the fractional

parameter d in non-stationary ARFIMA(0, d, 0) processes with the estimation method based

on the wavelet theory. We prove that the wavelet estimator for d also works for non-stationary

ARFIMA(0, d, 0) processes for a broad class of wavelet bases. We observe that the behavior

of all four wavelet bases considered here were very much satisfactory. These methods improve

the estimation of d specially for the situation when the process is non-stationary with no level-

reversion property, that is, when d ∈ (1.0, 1.5). It was already known that in this range none

of the common methods used in the literature were reasonable (see Lopes, 2008). With the ca-

pability of analyzing stationary (when d ∈ (0.0, 0.5)), and non-stationary (when d ∈ (0.5, 1.5))

time series, the wavelet transform proves to be very efficient and robust in ARFIMA(0, d, 0)

models. They also show very small bias and mean squared error values for sample sizes of

magnitude of 512 observations. We also observe the robustness of the Haar basis, the simplest

one, for cases where d ≤ 0.15, and specially for situations with no level-reversion property.

We illustrate the good performance of the wavelet estimators in two non-stationary real data

sets.

The extension of these results to general ARFIMA(p, d, q) models requires some (para-

metric) estimation procedure for the AR and MA components. However, d̂GPH , d̂SPR and

d̂wave are all bared on a two-stage procedure, whose first step deals with the estimation of d.

Therefore, a better estimator for d should provide us with a better first step for a two-stage

ARFIMA(p, d, q) estimation procedure. Our aim using only ARFIMA(0, d, 0) models was not

to restrict the scope of the analysis (and consequently its applicability) but to understand the

performance differences of the estimators for d in a more controlled set-up.
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em Matemática, by Pronex (E-26/170.008/2008-APQ1) and by Projeto Universal (CNPq-No.

474094/2008-1). A. Pinheiro was partially supported by FAPESP (2008/51097-6), Projeto

Universal (CNPq-No. 480831/2007-6) and CAPES-Brazil.

References

Beran, J., 1994. Statistics for Long Memory Processes. Chapman & Hall, New York.

Geweke, J. and S. Porter-Hudak, 1983. The estimation and application of long-memory

time series models. J. Time Ser. Anal. 4(4), 221-238.

7



Hosking, J., 1981. Fractional Differencing. Biometrika 68(1), 165-167.

Hurst, H.E., 1951. Long-Term Storage Capacity of Reservois. Trans. Amer. Soc. Civil

Eng. 116, 770-799.

Jensen, M. J., 1999. Using Wavelets to Obtain a Consistent Ordinary Least Square Esti-

mator. J. Forecast. 18, 17-32.

Lopes, S.R.C., 2008. Long-Range Dependence in Mean and Volatility: Models, Estimation

and Forecasting. In: In and Out of Equilibrium 2 , V. Sidoravicius e M.E. Vares (eds.),
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Table 1: Simulated Non-stationary ARFIMA(0, d, 0) Processes: Mean Estimates and Mean

Squared Errors (in parentheses).

d n d̂GP H d̂SP R d̂Haar d̂Mexhat d̂Shannon d̂Morlet

128 0.7186 0.6273 0.5516 0.6843 0.5603 0.5810

(0.0642) (0.0465) (0.0443) (0.0297) (0.0464) (0.0584)

256 0.7221 0.6601 0.5818 0.6607 0.6096 0.6208

(0.0510) (0.0331) (0.0213) (0.0172) (0.0156) (0.0196)

0.70 512 0.7339 0.6888 0.6169 0.6911 0.6273 0.6367

(0.0287) (0.0190) (0.0104) (0.0075) (0.0090) (0.0097)

1024 0.7215 0.7004 0.6378 0.6924 0.6510 0.6547

(0.0210) (0.0138) (0.0061) (0.0054) (0.0046) (0.0053)

128 0.9084 0.8688 0.7682 0.8976 0.8290 0.7733

(0.0618) (0.0462) (0.0322) (0.0290) (0.0350) (0.0550)

256 0.9203 0.8818 0.7935 0.8912 0.8485 0.8265

(0.0289) (0.0233) (0.0187) (0.0108) (0.0139) (0.0160)

0.90 512 0.9200 0.9085 0.8279 0.9031 0.8688 0.8450

(0.0258) (0.0197) (0.0084) (0.0061) (0.0080) (0.0099)

1024 0.9244 0.9191 0.8454 0.9046 0.8777 0.8615

(0.0169) (0.0127) (0.0046) (0.0043) (0.0043) (0.0047)

128 1.0403 1.0441 0.9860 1.0434 1.0847 0.9257

(0.0513) (0.0269) (0.0290) (0.0223) (0.0427) (0.0669)

0.256 1.0526 1.0599 1.0339 1.0316 1.0758 1.0129

(0.0309) (0.0170) (0.0132) (0.0148) (0.0141) (0.0192)

1.10 512 1.0117 1.0453 1.0507 1.0285 1.0746 1.0497

(0.0283) (0.0132) (0.0062) (0.0099) (0.0046) (0.0077)

1024 1.0199 1.0549 1.0628 1.0311 1.0620 1.0618

(0.0175) (0.0093) (0.0042) (0.0075) (0.0037) (0.0046)

128 1.0633 1.1076 1.2130 1.0716 1.2803 1.0311

(0.0918) (0.0501) (0.0207) (0.0668) (0.0171) (0.0974)

256 1.0460 1.0956 1.2481 1.0669 1.2151 1.1431

(0.0888) (0.0518) (0.0100) (0.0626) (0.0109) (0.0321)

1.30 512 1.0585 1.1287 1.2688 1.0852 1.1694 1.1794

(0.0792) (0.0377) (0.0054) (0.0559) (0.0187) (0.0181)

1024 1.0504 1.1200 1.2736 1.0740 1.1435 1.1779

(0.0776) (0.0391) (0.0040) (0.0594) (0.0257) (0.0173)

128 1.0591 1.1151 1.3008 1.0878 1.3143 1.0446

(0.1512) (0.0948) (0.0201) (0.1150) (0.0188) (0.1545)

256 1.0481 1.1245 1.3404 1.0619 1.2370 1.1534

(0.1478) (0.0847) (0.0088) (0.1239) (0.0288) (0.0691)

1.40 512 1.0726 1.1348 1.3449 1.0872 1.1874 1.1972

(0.1295) (0.0778) (0.0071) (0.1116) (0.0473) (0.0453)

1024 1.0426 1.1151 1.3598 1.0690 1.1456 1.1895

(0.1431) (0.0882) (0.0046) (0.1201) (0.0667) (0.0479)

Best results in boldface.
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